Assessing sampling sufficiency of network metrics using bootstrap

نویسندگان

  • Grasiela Casas
  • Vinicius A.G. Bastazini
  • Vanderlei J. Debastiani
  • Valério D. Pillar
چکیده

Sampling the full diversity of interactions in an ecological community is a highly intensive effort. Recent studies have demonstrated that many network metrics are sensitive to both sampling effort and network size. Here, we develop a statistical framework, based on bootstrap resampling, that aims to assess sampling sufficiency for some of the most widely used metrics in network ecology, namely connectance, nestedness (NODFnested overlap and decreasing fill) and modularity (using the QuaBiMo algorithm). Our framework can generate confidence intervals for each network metric with increasing sample size (i.e., the number of sampled interaction events, or number of sampled individuals), which can be used to evaluate sampling sufficiency. The sample is considered sufficient when the confidence limits reach stability or lie within an acceptable level of precision for the aims of the study. We illustrate our framework with data from three quantitative networks of plant and frugivorous birds, varying in size from 16 to 115 species, and 17 to 2,745 interactions. These data sets illustrate that, for the same dataset, sampling sufficiency may be reached at different sample sizes depending on the metric of interest. The bootstrap confidence limits reached stability for the two largest networks, but were wide and unstable with increasing sample size for all three metrics estimated based on the smallest network. The bootstrap method is useful to empirical ecologists to indicate the minimum number of interactions necessary to reach sampling sufficiency for a specific network metric. It is also useful to compare sampling techniques of networks in their capacity to reach sampling sufficiency. Our method is general enough to be applied to different types of metrics and networks. . CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/080655 doi: bioRxiv preprint first posted online Oct. 13, 2016;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-Bootstrap Network Analysis—an Application in Functional Connectivity Fingerprinting

Brain parcellation divides the brain's spatial domain into small regions, which are represented by nodes within the network analysis framework. While template-based parcellations are widely used, the parcels on the template do not necessarily match individual's functional nodes. A new method is developed to overcome the inconsistent network analysis results by by-passing the difficulties of par...

متن کامل

Exact Performance of CoD Estimators in Discrete Prediction

The coefficient of determination (CoD) has significant applications in genomics, for example, in the inference of gene regulatory networks. We study several CoD estimators, based upon the resubstitution, leave-one-out, cross-validation, and bootstrap error estimators. We present an exact formulation of performance metrics for the resubstitution and leave-one-out CoD estimators, assuming the dis...

متن کامل

Assessment of the Conservation Area Network Development in Markazi Province Using Landscape Metrics

Prioritization and selection of sample areas from the whole nature is necessary to protect biodiversity. The main purpose of this study was to evaluate the development of a network of conservation areas in Markazi province using landscape metrics. For this purpose, we used MaxEnt, Marxan, Fragstat softwares and eight conservation criteria. Results were compared by using simulated sorting, greed...

متن کامل

The Hybrid Bootstrap: A Drop-in Replacement for Dropout

Regularization is an important component of predictive model building. The hybrid bootstrap is a regularization technique that functions similarly to dropout except that features are resampled from other training points rather than replaced with zeros. We show that the hybrid bootstrap offers superior performance to dropout. We also present a sampling based technique to simplify hyperparameter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016